Received 27 July 2006

Accepted 18 August 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Igor V. Zatovsky,^a* Katherina V. Terebilenko,^a Nikolay S. Slobodyanik,^a Vyacheslav N. Baumer^b and Oleg V. Shishkin^b

^aDepartment of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska str., 01033 Kyiv, Ukraine, and ^bSTC 'Institute for Single Crystals', National Academy of Science of Ukraine, Lenina ave. 60, 61001 Kharkiv, Ukraine

Correspondence e-mail: zvigo@yandex.ru

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(P-O) = 0.006 \text{ Å}$ R factor = 0.035 wR factor = 0.094 Data-to-parameter ratio = 20.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved $K_2Bi(PO_4)(WO_4)$ with a layered anionic substructure

Dipotassium bismuth phosphate tungstate has been synthesized using the flux technique. It crystallizes in the space group *Ibca* and is isotypic with Na₂Y(PO₄)(MoO₄). It exhibits a layered structure, which is built up from $[Bi(PO_4)(WO_4)]_{\infty}^{2^-}$ layers. Each layer is composed of $[BiO_8]_{\infty}$ zigzag chains, which are connected *via* PO₄ and WO₄ tetrahedra. The parallel anionic $[Bi(PO_4)(WO_4)]_{\infty}^{2^-}$ layers are stacked along [100] and are held together by K⁺ counter-cations which occupy sites in the interlayer space. Bi, W and P atoms are all located on twofold axes.

Comment

Complex phosphates with mixed-anionic framework structures have been extensively studied in the past. Double phosphates containing additional XO_4 anionic tetrahedra (X = V, Si, Ge, Mo, W) are known either as solid solutions or as compounds with unique structures. The solid solutions usually are members of well known structural types, e.g. the phosphate silicate $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$ (Hong 1976; Goodenough et al. 1976) and the phosphate molybdate $Na_{1-x}Zr_2(PO_4)_{3-x}$ $(MoO_4)_x$ (Pet'kov et al., 2003; Sukhanov et al. 2006) are both isotypic with NaZr₂(PO₄)₃ (NZP) (Hagman & Kierkegaard, 1968), whereas the phosphate vanadates $K_3Ln(PO_4)_x(VO_4)_{2-x}$ (0.53 < x < 2.00) (Kirichenko et al., 1999; Komissarova et al., 2002) are isotypic with arcanite (K₂SO₄) (McGinnety, 1972). Other complex phosphates with an additional tetrahedral anion have stoichiometric formulas, e.g. $Ln_{11}O_{10}(XO_4)(PO_4)_3$ (Ln = Pr - Er; X = Si, Ge; Palkina et al., 1997; Dzhurinskii &Krut'ko, 2000) and $Ln_3O(XO_4)(PO_4)$ (Ln = La-Er; X = Si, Ge; Dzhurinskii et al., 1991; Dzhurinskii & Lysanova, 1998). The phosphate tungstate $Zr_2(PO_4)_2(WO_4)$ (Evans et al., 1995), and the phosphate molybdates Na₃Ba(MoO₄)(PO₄) (Kolsi et al., 1981) and Na₂Y(MoO₄)(PO₄) (Ben Amara & Dabbabi, 1987) are also known. The structure of the latter has previously been reported as monoclinic with space group C2/c (Ben Amara & Dabbabi, 1987), but was later revised to be orthorhombic with space group Ibca (Marsh, 1987). We report here the fluxgrowth synthesis and structural characterization of $K_2Bi(PO_4)(WO_4),$ (I), which is isotypic with $Na_2Y(MoO_4)(PO_4)$.

The Bi atom is situated on a position with .2. symmetry and is surrounded by eight O atoms with a distorted dodecahedral environment. The BiO₈ polyhedron exhibits four pairs of Bi— O distances within the range 2.358 (6) to 2.562 (6) Å (Table 1). By edge-sharing, the BiO₈ polyhedra form infinite zigzag chains extending parallel to [001], with a Bi—Bi distance of 4.058 (1) Å. The PO₄ tetrahedron is joined to four BiO₈ polyhedra, each of which in turn is linked to four phosphate tetrahedra, which results in the formation of four-membered

inorganic papers

Figure 1

Projection of the anionic layer $[Bi(PO_4)(WO_4)]^{2-1}$ on to the *bc* plane.

Figure 2

A view of the cage where the potassium atoms are located, displayed with anisotropic displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1 - x, y, $-\frac{1}{2} - z$; (ii) 1 - x, $\frac{1}{2} - y$, z; (iii) x, -y, $-\frac{1}{2} - z$; (iv) x, y, $-\frac{1}{2} - z$; (v) x, $\frac{1}{2} - y$, -z; (vi) 1 - x, y, $-\frac{1}{2} + z$; (vii) 1 - x, y, $\frac{1}{2} + z$; (viii) 1 - x, -y, -1 - z; (ix) 1 - x, -y, -z; (x) x, -y, z; (xi) $x, -\frac{1}{2} + y$, $-\frac{1}{2} - z$; (xii) 1 + x, $-\frac{1}{2} + y$, $-\frac{1}{2} - z$; (xiii) 1 - x, $-\frac{1}{2} - y$, z; (xiv) -x, -y, $-\frac{1}{2} + z$; (xv) -x, -y, -1 + z; (xvi) 1 - x, -y, 1 - z; (xvii) x, y, -1 + z; (xviii) 1 - x, -y, -1 + z].

planar rings with a composition BiO₂PO₂BiO₂. The arrangement of corner-sharing BiO₈ dodecahedra and phosphate tetrahedra is remarkably similar to that in $BiPO_4$ (Romero et al., 1994). Two BiO₈ polyhedra of individual chains are linked together via WO₄ tetrahedra. Both tetrahedral WO₄ and PO₄ units have local $C_{2\nu}$ symmetry (Table 1). As a result of connection of the BiO8, PO4 and WO4 polyhedra, the layered anion $[Bi(PO_4)(WO_4)]^{2-}$ is formed parallel to the *bc* plane (Fig. 1). The distance between two neighbouring layers is a/2[9.8627 (12) Å].

All potassium cations are located in the vacancies that are formed by stacking of the anionic layers. K⁺ is eight-coordinated by O atoms with K-O distances ranging from 2.658 (7) to 3.230 (7) Å (Table 1). Each WO₄ tetrahedron of the anionic layer coordinates to two potassium cations, which occupy sites in the cavities of the next layer (Fig. 2). As a result, the potassium cations contribute to the stability of the structure

The structure of $K_2Bi(PO_4)(WO_4)$ in a view approximately along [001].

and consolidate the structure into a three-dimensional framework (Fig. 3).

The ionic radii of the trivalent rare-earth elements (Ce-Gd) lie between those of Y and Bi (Shannon, 1976). Consequently, it is worthy of note that a large family of compounds of general formula M_2 Ln(PO₄)(AO_4) (M = Na, K; Ln = Ce – Gd; A = Mo, W) is expected to be synthesized.

Experimental

All reagents used were of analytical grade (Merck, p.A.). Single crystals of (I) were grown by spontaneous crystallization of a flux in the system $K_2O-Bi_2O_3-P_2O_5-WO_3$. Bi_2O_3 (1.280 g, 2.75 mmol), KPO₃ (0.865 g, 7.32 mmol), K₄P₂O₇ (1.209 g, 3.66 mmol), K₂WO₄ (3.882 g, 11.91 mmol) and WO₃ (2.763 g, 11.91 mmol) were mixed in an agate mortar, placed in a platinum crucible and heated to 1223 K in air. The homogenous flux was cooled at a rate of 30 K h^{-1} in the temperature range 1223-873 K. After cooling to room temperature, colorless crystals of (I) with mostly plate-like habit were washed with hot deionized water. Elemental analysis indicated the presence of K, Bi, W and P in an atomic ratio close to 2:1:1:1.

ata

$K_2[Bi(PO_4)(WO_4)]$	Z = 8
$M_r = 630$	$D_x = 4.838 \text{ Mg m}^{-3}$
Orthorhombic, Ibca	Mo $K\alpha$ radiation
$a = 19.7253 (12) \text{\AA}$	$\mu = 34.77 \text{ mm}^{-1}$
$b = 12.4764 \ (8)$ Å	T = 293 (2) K
c = 7.0284 (2) Å	Prism, colorless
$V = 1729.69 (16) \text{ Å}^3$	$0.08 \times 0.07 \times 0.03 \text{ mm}$

Data collection

- Oxford XCalibur-3 CCD areadetector diffractometer
- φ and ω scans
- Absorption correction: multi-scan
 - (Blessing, 1995) $T_{\min} = 0.075, T_{\max} = 0.351$

16151 measured reflections 1265 independent reflections 1098 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.064$

 $\theta_{\rm max} = 30^\circ$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0467P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.035$	+ 34.3351P]
$wR(F^2) = 0.094$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.18	$(\Delta/\sigma)_{\rm max} < 0.001$
1265 reflections	$\Delta \rho_{\rm max} = 4.87 \text{ e } \text{\AA}^{-3}$
62 parameters	$\Delta \rho_{\rm min} = -2.37 \text{ e } \text{\AA}^{-3}$
	Extinction correction: SHELXL97
	Extinction coefficient: 0.00034 (5)

Table 1	
---------	--

Selected geometric parameters (Å, °).

Bi-O1 ⁱ	2.358 (6)	K-01	3.001 (7)
Bi-O2	2.435 (6)	$K-O4^{vi}$	3.078 (9)
Bi-O3	2.441 (6)	K-O4 ^{vii}	3.179 (9)
Bi-O1 ⁱⁱ	2.562 (6)	K-O3 ^{vii}	3.230 (7)
K-O4 ⁱⁱⁱ	2.658 (7)	W-O4	1.767 (7)
K-O2 ^{iv}	2.715 (6)	W-O3	1.780 (7)
$K-O2^{i}$	2.768 (6)	P-O1	1.536 (6)
$K-O3^{v}$	2.982 (7)	P-O2	1.541 (6)
$O4^{vi}-W-O4$	111.0 (5)	O1-P-O1 ^{iv}	102.9 (5)
$O4^{vi}-W-O3$	109.9 (4)	O1-P-O2 ^{iv}	110.3 (3)
O4-W-O3	106.7 (3)	$O1^{iv} - P - O2^{iv}$	113.4 (3)
$O4^{vi}-W-O3^{vi}$	106.7 (3)	O1-P-O2	113.4 (3)
O4-W-O3vi	109.9 (4)	$O1^{iv}-P-O2$	110.3 (3)
$O3-W-O3^{vi}$	112.7 (4)	$O2^{iv}-P-O2$	106.6 (4)
Symmetry codes: (i) -	$x + \frac{1}{2} - v + \frac{3}{2} - 7 + \frac{1}{2}$	$(ii) x, y = \frac{1}{2}, -7; (iii) = x.$	$v + \frac{1}{2} - z + \frac{1}{2}$ (iv)

Symmetry codes. (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x, y - \frac{1}{2}, -z$; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (i) $-x + \frac{1}{2}, y, -z$; (v) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (vi) $x, -y + 1, -z + \frac{1}{2}$; (vii) $x, y + \frac{1}{2}, -z$.

The highest peak and the deepest hole in the final difference map are located 0.76 and 1.24 Å from Bi, respectively.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2005); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg,

1999); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

Ben Amara, M. & Dabbabi, M. (1987). Acta Cryst. C43, 616-618.

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. (1999). *DIAMOND*. Version 2.0. University of Bonn, Germany.
- Dzhurinskii, B. F. & Krut'ko, V. A. (2000). Russ. J. Inorg. Chem. 45, 1157–1159.
 Dzhurinskii, B. F. & Lysanova, G. V. (1998). Russ. J. Inorg. Chem. 43, 1931–1940
- Dzhurinskii, B. F., Tananaev, I. V. & Tselebrovskaya, E. G. (1991). Inorg. Mater. 45, 334–339.
- Evans, J. S. O., Mary, T. A. & Sleight, A. W. (1995). J. Solid State Chem. 120, 101–104.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Goodenough, J. B., Hong, H. Y. P. & Kafalas, J. A. (1976). *Mater. Res. Bull.* 11, 203–220.
- Hagman, L. O. & Kierkegaard, P. (1968). Acta Chem. Scand. 22, 1822-1832.
- Hong, H. Y. P. (1976). Mater. Res. Bull. 11, 173-182.
- Kirichenko, A. N., Otkidach, E. N., Spiridonov, F. M., Kharsika, V. F. & Komissarova, L. N. (1999). Russ. J. Inorg. Chem. 44, 997–999.
- Kolsi, A. W., Quarton, M. & Freundlich, W. (1981). J. Solid State Chem. 36, 107–111.
- Komissarova, L. N., Bobylev, A. P., Kirichenko, A. N., Pushkina, G. Ya. & Spiridonov, F. M. (2002). *Russ. J. Inorg. Chem.* 47, 605–609.
- Marsh, R. E. (1987). Acta Cryst. C43, 2470.
- McGinnety, J. A. (1972). Acta Cryst. B28, 2845-2852.

Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED (Versions 1.171.28p4 beta). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

- Palkina, K. K., Kuz'mina, N. E., Dzhurinskii, B. F. & Tselebrovskaya, E. G. (1997). Russ. J. Inorg. Chem. 42, 1124–1129.
- Pet'kov, V. I., Sukhanov, M. V. & Kurazhkovskaya, V. S. (2003). Radiochemistry, 5, 620-625.
- Romero, B., Bruque, S., Aranda, M. A. G. & Iglesias, J. E. (1994). *Inorg. Chem.* **33**, 1869–1874.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sukhanov, M. V., Pet'kov, V. I., Kurazhkovskaya, V. S., Eremin, N. N. & Urusov, V. S. (2006). *Russ. J. Inorg. Chem.* 51, 706–711.